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Abstract

In this paper, we mainly study the monomial-prime numbers, which are of the form pnk

for primes p and integers k ≥ 2. First, we give an asymptotic estimate on the number

of numbers of a general form pf(n) for arithmetic functions f satisfying certain growth

conditions, which generalizes Bhat’s recent result on the Square-Prime Numbers. Then, we

prove three Mertens-type theorems related to numbers of a more general form, partially

extending the recent work of Qi-Hu, Popa and Tenenbaum on the Mertens sum evaluations.

At the end, we evaluate the average and variance of the number of distinct monomial-prime

factors of positive integers by applying our Mertens-type theorems.
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1. Introduction and statement of main results1

The distribution of integers with certain constraints is a fundamental topic in analytic2

number theory. Recently, Bhat [3] studied the numbers of the form pn2, which are named3

Square-Prime (SP) Numbers, for integers n > 1 and primes p. He showed that the number4

of SP Numbers up to x is asymptotic to (ζ(2)− 1)x/log x, where ζ(s) =
∑∞

n=1 1/n
s (s > 1)5
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is the Riemann zeta function. In this paper, we study the numbers of a general form pf(n)6

for certain primes p and arithmetic functions f : N → R≥1. If f(n) = ns is a monomial for7

some positive real number s > 1, we call pns a monomial-prime number of power s. Our8

first result gives an asymptotic formula for the number of monomial-prime numbers.9

Theorem 1.1. Let S be a set of primes satisfying the following asymptotic estimate∑
p≤x,p∈S

1 =
cxγ

logα(x)

(
1 +O

(
1

logβ(x)

))
for some positive constants c, α, β, and 0 < γ ≤ 1. Let f : N → R≥1 be an increasing

positive sequence satisfying
∑

f(n)≥x 1/f
γ(n) ≪ x−δ for some δ > 0. Then as x → ∞ we

have

#{(p, n) : pf(n) ≤ x, p ∈ S} ∼

(
∞∑
n=1

1

fγ(n)

)
· cxγ

logα(x)
.

In particular, for any real number s > 1 we have

#{(p, n) : pns ≤ x, p prime} ∼ ζ(s) · x

log x
. (1)

Remark 1. For s = 1 in (1), Bănescu and Popa proved in [4, Proposition 5(ii)] that

#{(p, n) : pn ≤ x, p prime} ∼ x log log x.

Theorem 1.1 builds a connection between the density of sets of primes and the asymptotic10

behavior on numbers of the form pf(n). We see that the asymptotic behavior of monomial-11

prime numbers differs from that of prime numbers by the special value ζ(s) of the Riemann12

zeta function as a factor. Several common examples of S will be given in section 2.1 in-13

cluding primes in arithmetic progressions, in the Chebatorev density theorem, in the Beatty14

sequences, in the Piatetski-Shapiro sequences, and with preassigned digits. If we take S to15

be the set of all primes and f(n) = n2, then Bhat’s asymptotic formula on the number of SP16

Numbers is recovered from Theorem 1.1 by the prime number theorem. Moreover, analogous17

to the SP Numbers, we call pn3 a Cube-Prime (CP) Number1 for n > 1. Taking f(n) = n3,18

we get the following asymptotic formula on the number of CP Numbers.19

1Here we require n > 1 for CP Numbers to agree with the SP Numbers defined by Bhat. But n = 1 is

allowed for monomial-prime numbers defined in this paper.
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Corollary 1. The number of CP Numbers smaller than x is asymptotic to (ζ(3)−1)x/log x.20

In [3, Theorem 6.1] Bhat also gave an asymptotic estimate on the number of SP Numbers21

ending in 1. As another application of Theorem 1.1, we get the following asymptotic estimate22

on the number of CP Numbers ending in 1 as well.23

Corollary 2. The number of CP Numbers ending in 1 is asymptotic to

x

4000 log x

(
ζ

(
3,

1

10

)
+ ζ

(
3,

3

10

)
+ ζ

(
3,

7

10

)
+ ζ

(
3,

9

10

)
− 1000

)
, (2)

where ζ(s, t) =
∑∞

n=0 1/(n+ t)s is the Hurwitz zeta function.24

Remark 2. The asymptotic estimates of CP Numbers ending in 3, 7, and 9 respectively are25

the same as that ending in 1. Similarly, one can count the number of CP Numbers ending26

in 2, 4, 5, 6, and 8 in the same way as the case ending in 1, but the asymptotic estimates27

will be slightly different.28

Next, we evaluate some sums and products of Mertens type for monomial-prime numbers.

Recall that Mertens’ theorems are three results related to the reciprocals of primes (e.g.,

see [17, Chapter I .1]), which are stated as follows:∑
p≤x

log p

p
= log x+O(1) (Mertens’ first theorem), (3)

∑
p≤x

1

p
= log log x+M +O

(
1

log x

)
(Mertens’ second theorem), (4)

∏
p≤x

(
1− 1

p

)
=

e−γ

log x

(
1 +O

(
1

log x

))
(Mertens’ third theorem), (5)

where M is the Mertens’ constant and γ is the Euler’s constant.29

Generalizations of Mertens’ theorems have been widely studied in many literatures. With

respect to the Mertens’ first theorem, Qi and Hu [16] evaluated the following sum∑
p1···pk≤x

logs(p1 · · · pk)
p1 · · · pk

for positive integers k and s. By their result, for s = 1 there is a polynomial F (X) of degree

k − 1 such that ∑
p1···pk≤x

log(p1 · · · pk)
p1 · · · pk

= F (log log x) log x+O
(
(log log x)k

)
. (6)
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See Lemma 2.1 in Section 2.2 for the explicit description of F (X). In particular, when k = 2,30

one may take F (X) = 2X + 2M − 2, see [5, Theorem 3.3] as well.31

With respect to the Mertens’ second theorem, if we let

Sk(x) :=
∑

p1···pk≤x

1

p1 · · · pk
,

where pj denotes a prime number, then Mertens’ second theorem evaluates S1(x). In [13, 14],

Popa proved asymptotic estimates for S2(x) and S3(x) respectively. In 2017, Tenenbaum [18,

19] showed the following asymptotic formula for general Sk(x) using the Selberg-Delange

method: for k ≥ 1, we have

Sk(x) = Pk (log log x) +O

(
(log log x)k−1

log x

)
(x ≥ 3), (7)

where Pk(X) :=
∑

0≤j≤k λj,kX
j and

λj,k :=
∑

0≤m≤k−j

(
k

m, j, k −m− j

)
(M − γ)k−m−j

(
1

Γ

)(m)

(1) (0 ≤ j ≤ k).

Here M is the Mertens’ constant and γ is the Euler’s constant as in Mertens’ third theorem,32

Γ(x) is the Gamma function, and (1/Γ)(m) is the m-th derivative of 1/Γ. We remark that33

recently Qi and Hu [16] proved another formula for (7) and Bayless et al. [2] showed these34

two formulas ere equivalent to each other.35

Our second main result is the following theorem of Mertens type for the numbers of more36

general form p1 · · · pkf1(n1) · · · fr(nr) for some arithmetic functions fi and integers k, r ≥ 1,37

1 ≤ i ≤ r.38

Theorem 1.2. Let k and r be two positive integers. Let F (X) and Pk(X) be the same

polynomials as in (6) and (7) respectively. For 1 ≤ i ≤ r, let fi : N → R≥1 be an increasing

positive function satisfying
∑

fi(n)≥x 1/fi(n) ≪ x−δi for some δi > 0. Then we have

(I) :
∑

p1···pkf1(n1)···fr(nr)≤x

log(p1 · · · pkf1(n1) · · · fr(nr))

p1 · · · pkf1(n1) · · · fr(nr)
(8)

=

(
r∏

i=1

∞∑
n=1

1

fi(n)

)
F (log log x) log x+O

(
(log log x)k

)
;
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(II) :
∑

p1···pkf1(n1)···fr(nr)≤x

1

p1 · · · pkf1(n1) · · · fr(nr)
(9)

=

(
r∏

i=1

∞∑
n=1

1

fi(n)

)
Pk(log log x) +O

(
(log log x)k

log x

)
;

(III) :
∏

p1···pkf1(n1)···fr(nr)≤x

(
1− 1

p1 · · · pkf1(n1) · · · fr(nr)

)
(10)

= e
−
(∏r

i=1

∑∞
n=1

1
fi(n)

)
Pk(log log x)+c(k,f1,··· ,fr)

(
1 +O

(
(log log x)k−1

log x

))
.

Here the constant c(k, f1, · · · , fr) in (10) depends on k and the functions fi, 1 ≤ i ≤ r, only.39

Taking k = r and fi(n) = nsi for any positive real number si > 1, 1 ≤ i ≤ k, we get the40

following result of Mertens type for the products of k monomial-prime numbers.41

Corollary 3. Let s1 > 1, . . . , sk > 1 be k positive real numbers. Let F (X) and Pk(X) be as

in Theorem 1.2. Then we have

(I)′ :
∑

p1n
s1
1 ···pkn

sk
k ≤x

log(p1n
s1
1 · · · pknsk

k )

p1n
s1
1 · · · pknsk

k

(11)

=

(
k∏

i=1

ζ(si)

)
F (log log x) log x+O

(
(log log x)k

)
;

(II)′ :
∑

p1n
s1
1 ···pkn

sk
k ≤x

1

p1n
s1
1 · · · pknsk

k

=

(
k∏

i=1

ζ(si)

)
Pk(log log x) +O

(
(log log x)k

log x

)
; (12)

(III)′ :
∏

p1n
s1
1 ···pkn

sk
k ≤x

(
1− 1

p1n
s1
1 · · · pknsk

k

)
(13)

= e−(
∏r

i=1 ζ(si))Pk(log log x)+c(k,s1,··· ,sk)
(
1 +O

(
(log log x)k

log x

))
.

Here the constant c(k, s1, · · · , sk) in (13) depends on the constants k, s1, · · · , and sk.42

Remark 3. On Mertens’ first theorem, notice that in the case k = 1 the error term in (3)

is better than that in (6). Due to this observation, the following result gives a more precise

estimate than (11) for k = 1: let s > 1 be a positive number, then∑
pns≤x

log(pns)

pns
= ζ(s) log x− sζ ′(s) log log x+O(1). (14)
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Remark 4. There are other generalizations of Mertens type theorems too. For example,43

Garcia and Lee [7] recently obtained unconditional and effective number-field analogues44

of the three Mertens’ theorems. In [12], Lichtman proved an asymptotic formula for the45

dissecting sum of reciprocals of numbers with exactly k prime divisors, k ≥ 1. We leave the46

monomial-prime analogues of these results to the interested readers.47

Finally, we apply (12) in Corollary 3 to compute the average and variance of the number48

of distinct monomial-prime factors of integers. Let k ≥ 2 be an integer. Let ωk(n) be the49

number of distinct monomial-prime factors of n of power k. That is, ωk(n) =
∑

pmk|n 1.50

Theorem 1.3. We have∑
n≤x

ωk(n) = ζ(k)x log log x+ ζ(k)Mx+O

(
x log log x

log x

)
, (15)

and ∑
n≤x

(ωk(n)− ζ(k) log log x)2 =
ζ3(k)− ζ2(k)ζ(2k)

ζ(2k)
x(log log x)2 +O(x log log x), (16)

where M is the Mertens’ constant.51

Remark 5. Recall ω(n) is the arithmetic function that counts the number of distinct prime

factors of n, then one may view ωk(n) as an analogue of ω(n). Although ωk(n) is not a

multiplicative function as ω(n) is, some properties of ω(n) still hold with respect to ωk(n).

For example, let k = 2, if there are infinitely many natural numbers n such that ω(n) =

ω(n + 2) = 1 or ω2(n) = ω2(n + 2) = 1, then both of them would imply the famous twin

prime conjecture is true, which is still far from reach now. We do have some results on ω(n)

and ω(n+2), as well as ω2(n) and ω2(n+2), taking the same values. For example, it follows

by [8, Theorem 5] that there are infinitely many integers n such that ω(n) = ω(n + 2) = 5

and ω2(n) = ω2(n + 2) = 9. Also, one may think of ω(n) as the limit of ωk(n) as k → ∞,

then letting k → ∞ in Theorem 1.3, we recover the following estimates on ω(n) (e.g., see [6,

Theorems 3.1.1 and 3.1.2]):∑
n≤x

ω(n) = x log log x+Mx+O

(
x log log x

log x

)
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and ∑
n≤x

(ω(n)− log log x)2 = O(x log log x).

This paper is organized as follows. In Section 2 we introduce some interesting examples52

of sets of prime numbers and some technical theorems and lemmas that will be applied later.53

In Section 3 we first use the key technical tool, Lemma 2.2, to prove Theorem 1.1, and then54

we apply Theorem 1.1 to prove Corollary 2. In Section 4 we prove Theorem 1.2 and Equa-55

tion (14) by Lemma 2.2. In Section 5 we compute the average and variance of ωk(n) in56

Theorem 1.3 by applying (12) in Corollary 3 and Lemma 2.5.57

Notation. The letters p, q, p1, . . . , and pk always denote primes. We write f(x) =58

O(g(x)) or f(x) ≪ g(x) if there exists some constant C > 0 such that |f(x)| ≤ C|g(x)| for59

all x. The implied constant C may depend on some parameters, say k, m, or ε. We write60

f(x) ∼ g(x) if limx→∞ f(x)/g(x) = 1. As usual [a, b] is the least common multiple of a and61

b, (a, b) is the greatest common divisor of a and b, and ⌊x⌋ is the floor function.62

2. Nuts and bolts63

In this section, we list some examples of interesting sets of prime numbers, state a theorem64

on Mertens sums, and prove some lemmas that will be used in the proofs of main results.65

In particular, Lemma 2.2 is the key technical tool to be frequently used in the following66

sections.67

2.1. Examples of subsets of primes68

Let P be the set of all primes. Let S be a subset of primes and let πS(x) = {p ∈ S : p ≤ x}69

be the number of primes in S up to x. The following list gives several common interesting70

examples of S in the literature. The asymptotic estimates on πS(x) satisfy the assumptions71

in Theorem 1.1.72

1. Arithmetic progressions. Let q ≥ 2 and 1 ≤ a < q be two integers with (a, q) = 1.

Let S = {p ∈ P : p ≡ a (mod q)}, then by the prime number theorem in arithmetic
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progressions (e.g., see [17, Theorem II .4.1]), we have

πS(x) =
1

φ(q)

x

log x

(
1 +O

(
1

log x

))
.

2. Chebatorev density theorem. Let K/Q be a finite Galois extension with Galois group

G = Gal(K/Q). For any conjugacy class C ⊂ G, let

SC =

{
p ∈ P : p unramified,

[
K/Q
p

]
= C

}
,

where
[
K/Q
p

]
is the conjugacy class of Artin symbols with respect to an unramified

prime p. Then by effective versions of the Chebotarev density theorem from Lagarias

and Odlyzko [11, Theorems 1.3 and 1.4], we have

πSC
(x) =

|C|
|G|

x

log x

(
1 +O

(
1

log x

))
.

3. Beatty sequences. Let α be positive and irrational of finite type. Let

Sα = {p ∈ P : p = ⌊αn⌋ for some n ∈ N} .

Then by the prime number theorem for Beatty sequences [1, Corollary 5.5], we have

πSα(x) =
x

α log x

(
1 +O

(
1

log x

))
.

4. Piatetski-Shapiro primes. Let c ≥ 1 be positive and set

Sc := {p ∈ P : p = ⌊nc⌋ for some n ∈ N} .

Then by Piatetski-Shapiro’s work [15], we have

πSc(x) =
x1/c

log x

(
1 +O

(
1

log x

))
for c ∈ [1, 12/11).73

5. Primes with preassigned digits. Let q ≥ 2 be an integer and Aq = {0, 1, 2, . . . , q − 1}.

For integers n ≥ 0 and j ≥ 0, let aj(n) ∈ Aq be defined by n =
∑∞

j=0 aj(n)q
j. Let
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b ≥ 1 be an integer with q-ary expansion b =
∑r

j=0 bjq
j with b0, b1, . . . , br ∈ Aq and

(b0, q) = 1. For a sequence of indexes 1 ≤ l1 < · · · < lr, we take

Sb :=
{
p ∈ P : a0(p) = b0, alj(p) = bj,∀ 1 ≤ j ≤ r

}
.

Then by [10, Theorem 1], for qN < x < qN+1, N ≥ 1, 0 ≤ r <
√
N , 1 ≤ l1 < · · · <

lr ≤ N , we have

πSb
(x) =

1

φ(q)qr
x

log x

(
1 +O

(
1

log x

))
.

2.2. Multiple Mertens evaluations74

Suppose {an} is a sequence related to the Riemann zeta function, that is,

a2 = −ζ(2), a3 = 2ζ(3), a4 = 3ζ(2)2 − 6ζ(4),

ak =
k−3∑
i=1

(−1)iCi
k−1i!ζ(i+ 1)ak−1−i + (−1)k−1(k − 1)!ζ(k) (k > 4),

and C l
k =

(
k
l

)
. Then we set a series of polynomials {Qi(y) : i ≥ 0}:

Q0(y) = 1, Q1(y) = y +M,

Qk(y) = (y +M)k +
k∑

m=2

Cm
k am(y +M)k−m (k ≥ 2),

where M is Mertens’ constant.75

Now, we state a theorem about multiple Mertens evaluations by Qi and Hu.76

Lemma 2.1 ([16, Theorem 1.1]). For any positive integers k and s, the following evaluation

holds ∑
p1···pk≤x

logs(p1 · · · pk)
p1 · · · pk

=
k−1∑
l=0

(−1)l
Al+1

k

sl+1
Qk−1−l(log log x) · logs(x) + f(2) logs−1(2)

+O
(
logs−1(x) · (log log x)k

)
,

where

f(x) =
k−1∑
l=0

(−1)lAl+1
k Qk−1−l(log log x) · log x,

and the combinatorial number Al
k =

(
k
l

)
· l!.77

In (6), one may take F (X) =
∑k−1

i=0 (−1)iAi+1
k Qk−1−i(X).78
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2.3. Some lemmas79

Now we establish some lemmas that will be used in the proofs of our main results. In80

particular, in Lemma 2.2, A and B are two expressions on some variables. For example, we81

may take A = p1 · · · pk, then p1, . . . , pk are variables in this expression. If we take B = [ak, bk]82

or f1(n1) · · · fr(nr), then a and b or n1, . . . , nr are variables in B. In our applications, the83

variables of A and B are easy to see from their explicit expressions related to the summations.84

Lemma 2.2. Let A and B be two expressions. Let g(A) be a nonnegative function on A and

h(B) a nonnegative function on B. Suppose that g(A) has the following asymptotic estimate:∑
A≤x

g(A) = xγP (log log x, log x)

(
1 +O

(
(log log x)β

logα(x)

))
for some α > 0, β ∈ R, and γ ≥ 0. Here P (x, y) =

∑
u,v∈R cu,vx

uyv is a finite sum of some

monomials of two variables. If h(B) satisfies
∑

B h(B)/Bγ < ∞ with the following decaying

rate ∑
B≥x

h(B)

Bγ
≪ x−δ

for some δ > 0, then we have

∑
AB≤x

g(A)h(B) =

(∑
B

h(B)

Bγ

)
xγP (log log x, log x)

(
1 +O

(
log log x

log x

)
+O

(
(log log x)β

logα(x)

))
.

(17)

If P (log log x, log x) has no log x term, then the error term O
(

log log x
log x

)
in (17) can be replaced85

by O
(

1
log x

)
.86

Proof. Let ℓ ≥ max {δ−1, δ−1α}. We break the double summations up into two parts:∑
AB≤x

g(A)h(B) =
∑

B≤logℓ(x)

h(B)
∑

A≤x/B

g(A) +
∑

B>logℓ(x)

h(B)
∑

A≤x/B

g(A)

:= S1 + S2.

In S1, we have B ≤ logℓ(x), which implies log(x/B) = log x (1 +O (log log x/ log x)) and

log log(x/B) = log log x (1 +O (1/ log x)). Since logv(x/B) = logv(x) (1 +Ov,ℓ (log log x/ log x))

10



and (log log(x/B))u = (log log x)u (1 +Ou,ℓ (1/ log x)) for any u, v ∈ R, it follows that

P (log log(x/B), log(x/B)) = P (log log x, log x)

(
1 +O

(
log log x

log x

))
. (18)

By (18) we obtain that

S1 =
∑

B≤logℓ(x)

h(B)(x/B)γP (log log(x/B), log(x/B))

(
1 +O

(
(log log(x/B))β

logα(x/B)

))

=

 ∑
B≤logℓ(x)

h(B)

Bγ

xγP (log log x, log x)

(
1 +O

(
log log x

log x

))(
1 +O

(
(log log x)β

logα(x)

))

=

(∑
B

h(B)

Bγ
+O

(
1

logδℓ(x)

))
xγP (log log x, log x)

(
1 +O

(
log log x

log x

)
+O

(
(log log x)β

logα(x)

))

=

(∑
B

h(B)

Bγ

)
xγP (log log x, log x)

(
1 +O

(
log log x

log x

)
+O

(
(log log x)β

logα(x)

))
.

For S2, we have

S2 ≤
∑

B>logℓ(x)

h(B)
∑
A≤x

g(A) ≪ xγP (log log x, log x)

logδℓ(x)
.

Combining the estimates above for S1 and S2 completes the proof.87

Next we prove two lemmas on Mertens-type sums.88

Lemma 2.3. Let r ≥ 1 be an integer. Let f : Nr → R>0 be a function satisfying #{(n1, . . . , nr) ∈

Nr : f(n1, . . . , nr) ≤ a} is finite for any a ∈ R>0 and∑
f(n1,...,nr)≥x

1

f(n1, . . . , nr)
≪ x−δ

for some δ > 0. Then we have

∞∑
n1=1

· · ·
∞∑

nr=1

logs(f(n1, . . . , nr))

f(n1, . . . , nr)1−η
< +∞

for any 0 ≤ η < δ and s ≥ 0. Furthermore, for any 0 ≤ η < δ and s ≥ 0, we have∑
f(n1,...,nr)≥x

logs(f(n1, . . . , nr))

f(n1, . . . , nr)1−η
≪ xη−δ logs(x). (19)
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Proof. By our assumptions on f , it suffices to prove (19). We write n = (n1, . . . , nr) ∈ Nr.

Since
∑

f(n)≥x 1/f(n) = O
(
x−δ
)
, we have∑
x≤f(n)<2x

1

f(n)
= O

(
x−δ
)
.

This implies that #{n : x ≤ f(n) < 2x} = O(x1−δ) and δ ≤ 1. Then

∑
f(n1,...,nr)≥x

logs(f(n1, . . . , nr))

f(n1, . . . , nr)1−η
=

∞∑
k=0

∑
2kx≤f(n)<2k+1x

logs(f(n))

f(n)1−η

≤
∞∑
k=0

logs(2k+1x)

(2kx)1−η

∑
2kx≤f(n)<2k+1x

1

≪
∞∑
k=0

logs(2k+1x)

(2kx)1−η
· (2kx)1−δ

= xη−δ

∞∑
k=0

logs(2k+1x)

2k(δ−η)

≪ xη−δ

∞∑
k=0

(
log(2k+1) log x

)s
2k(δ−η)

≪ xη−δ logs(x),

which completes the proof.89

Lemma 2.4. Let fi : N → R≥1 be an increasing positive sequence satisfying
∑

fi(n)≥x 1/fi(n) ≪

x−δi for some δi > 0, 1 ≤ i ≤ r. Then we have∑
f1(n1)···fr(nr)≥x

1

f1(n1) · · · fr(nr)
≪ x−δ (20)

for some δ > 0.90

Proof. Indeed, notice that
∑∞

n=1 1/fi(n) < ∞ for each 1 ≤ i ≤ r. We have∑
f1(n1)···fr(nr)≥xr

1

f1(n1) · · · fr(nr)

=
∑

f1(n1)···fr(nr)≥xr

f1(n1)···fr−1(nr−1)≥xr−1

1

f1(n1) · · · fr(nr)
+

∑
f1(n1)···fr(nr)≥xr

f1(n1)···fr−1(nr−1)<xr−1

1

f1(n1) · · · fr(nr)

12



≤
∑

f1(n1)···fr−1(nr−1)≥xr−1

1

f1(n1) · · · fr(nr)
+

∑
fr(nr)≥x

1

f1(n1) · · · fr(nr)

=

 ∑
f1(n1)···fr−1(nr−1)≥xr−1

1

f1(n1) · · · fr−1(nr−1)

(∑
nr

1

fr(nr)

)

+

( ∑
n1...,nr−1

1

f1(n1) · · · fr−1(nr−1)

) ∑
fr(nr)≥x

1

fr(nr)


≪

∑
f1(n1)···fr−1(nr−1)≥xr−1

1

f1(n1) · · · fr−1(nr−1)
+ x−δr

≪ x−δ1 + · · ·+ x−δr ,

where the last line above holds by induction on r. Thus, we may take δ = r−1min {δ1, . . . , δr}91

for (20). This completes the proof.92

The following two lemmas will be applied in the study of the average and variance of93

ωk(x).94

Lemma 2.5. Let k ≥ 2 be an integer. Then we have
∞∑
a=1

∞∑
b=1

1

[ak, bk]
=

ζ3(k)

ζ(2k)
. (21)

Proof. Set d = (a, b), a = da′, b = db′, then we get [ak, bk] = dka′kb′k. It follows that

∞∑
a=1

∞∑
b=1

1

[ak, bk]
=

∞∑
d=1

∞∑
a′=1

∞∑
b′=1

(a′,b′)=1

1

dka′kb′k
= ζ(k)

∞∑
a′=1

∞∑
b′=1

(a′,b′)=1

1

a′kb′k
. (22)

Now, we compute the square of ζ(k) as follows:

ζ2(k) =
∞∑
a=1

∞∑
b=1

1

akbk
=

∞∑
d=1

∞∑
a′=1

∞∑
b′=1

(a′,b′)=1

1

d2ka′kb′k
= ζ(2k)

∞∑
a′=1

∞∑
b′=1

(a′,b′)=1

1

a′kb′k
.

This implies that
∞∑

a′=1

∞∑
b′=1

(a′,b′)=1

1

a′kb′k
=

ζ2(k)

ζ(2k)
. (23)

Then (21) follows by plugging (23) into (22).95
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For the tail of the double series in (21) we have the following bound.96

Lemma 2.6. For any ε > 0, we have∑
[ak,bk]≥x

1

[ak, bk]
= O

(
x−1+ 1

k
+ε
)
.

Proof. By [9, (1.81)], we have τ3(n) ≪ nε. Then we have∑
[ak,bk]≥x

1

[ak, bk]
=

∑
lk≥x,[ak,bk]=lk

1

lk
≪
∑
lk≥x

τ3(l)

lk
≪

∑
l≥x1/k

lε

lk
≪ x−1+ 1

k
+ε.

97

3. Proofs of Theorem 1.1 and Corollary 298

In this section we prove Theorem 1.1 and Corollary 2. Indeed, if we take A = p, B = f(n),99

g(A) = 1S(p), and h(B) = 1 in Lemma 2.2, where 1S is the indicator function on S, then100

Theorem 1.1 follows immediately. Therefore, it suffices to prove Corollary 2, in which we101

apply Theorem 1.1.102

Proof of Corollary 2. Using the fact that primes are asymptotically equi-distributed in the

reduced residues mod 10, we calculate the asymptotic estimates for CP Numbers ending in

1 as follows. We have the following four cases: when p ≡ 1 (mod 10), we require a3 to end

in 1, thus a is congruent to 1 modulo 10; when p ≡ 3 (mod 10), we require a3 to end in 7,

thus a is congruent to 3 modulo 10; when p ≡ 7 (mod 10), we require a3 to end in 3, thus

a is congruent to 7 modulo 10; and finally when p ≡ 9 (mod 10), we require a3 to end in

9, thus a is congruent to 9 modulo 10. From the definition of CP Numbers, we know that

a > 1. Therefore, the number of pairs (p, a) such that pa3 ≡ 1 (mod 10) with pa3 ≤ x is

#
{
(p, k) : p ≡ 1 (mod 10), p(10k + 1)3 ≤ x, k ≥ 1

}
+#

{
(p, k) : p ≡ 3 (mod 10), p(10k + 3)3 ≤ x, k ≥ 0

}
+#

{
(p, k) : p ≡ 7 (mod 10), p(10k + 7)3 ≤ x, k ≥ 0

}
+#

{
(p, k) : p ≡ 9 (mod 10), p(10k + 9)3 ≤ x, k ≥ 0

}
.

14



Then from Theorem 1.1, we have

#
{
(p, k) : p ≡ 1 (mod 10), p(10k + 1)3 ≤ x, k ≥ 1

}
∼ x

4 log x

∞∑
k=1

1

(10k + 1)3
=

x

4000 log x

(
ζ

(
3,

1

10

)
− 1000

)
.

Similarly, we obtain

#
{
(p, k) : p ≡ 3 (mod 10), p(10k + 3)3 ≤ x, k ≥ 0

}
∼ x

4000 log x
ζ

(
3,

3

10

)
,

#
{
(p, k) : p ≡ 7 (mod 10), p(10k + 7)3 ≤ x, k ≥ 0

}
∼ x

4000 log x
ζ

(
3,

7

10

)
,

and

#
{
(p, k) : p ≡ 9 (mod 10), p(10k + 9)3 ≤ x, k ≥ 0

}
∼ x

4000 log x
ζ

(
3,

9

10

)
.

Hence the asymptotic formula (2) holds by adding these four asymptotic estimates up.103

4. Proofs of Theorem 1.2 and Equation (14)104

In this section we prove Theorem 1.2 and Equation (14), in which we frequently apply105

Lemma 2.2.106

4.1. Proof of Theorem 1.2107

First, we prove (8). We write the partial sum in (8) as two parts:∑
p1···pkf1(n1)···fr(nr)≤x

log(p1 · · · pkf1(n1) · · · fr(nr))

p1 · · · pkf1(n1) · · · fr(nr)

=
∑

p1···pkf1(n1)···fr(nr)≤x

log(p1 · · · pk)
p1 · · · pkf1(n1) · · · fr(nr)

+
∑

p1···pkf1(n1)···fr(nr)≤x

log(f1(n1) · · · fr(nr))

p1 · · · pkf1(n1) · · · fr(nr)

:= S3 + S4.
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For S3, we take A = p1p2 · · · pk, B = f1(n1)f2(n2) · · · fr(nr), g(A) = (logA)/A, and

h(B) = 1/B in Lemma 2.2. Combining with (6) and Lemma 2.4, we have

S3 =

(
r∏

i=1

∞∑
n=1

1

fi(n)

)
· F (log log x) · log x+O

(
(log log x)k

)
. (24)

For S4, we take A = p1p2 · · · pk, B = f1(n1)f2(n2) · · · fr(nr), g(A) = 1/A, and h(B) =

(logB)/B in Lemma 2.2. Combining with 7, Lemma 2.3, and Lemma 2.4, we get

S4 =
r∑

i=1

∞∑
ni=1

log(f1(n1) · · · fr(nr))

f1(n1)f2(n2) · · · fr(nr)
· Pk(log log x)

(
1 +O

(
1

log log x · log x

))
= O

(
(log log x)k

)
. (25)

Combining (24) and (25) together gives the desired formula (8).108

Similarly, if we take A = p1 · · · pk, B = f1(n1) · · · fr(nr), g(A) = 1/A, and h(B) = 1/B109

in Lemma 2.2, then by Lemma 2.4 we immediately obtain (9).110

Finally, we use (9) to prove (10). Let

Vk,r(x) :=
∏

p1···pkf1(n1)···fr(nr)≤x

(
1− 1

p1 · · · pkf1(n1) · · · fr(nr)

)
.

After taking logarithm, we have

− log Vk,r(x) =
∑

p1···pkf1(n1)···fr(nr)≤x

− log

(
1− 1

p1 · · · pkf1(n1) · · · fr(nr) ≤ x

)
=

∑
p1···pkf1(n1)···fr(nr)≤x

∑
t≥1

1

t(p1 · · · pkf1(n1) · · · fr(nr))t

=
∑

p1···pkf1(n1)···fr(nr)≤x

1

p1 · · · pkf1(n1) · · · fr(nr)

+
∑

p1···pkf1(n1)···fr(nr)≤x

∑
t≥2

1

t(p1 · · · pkf1(n1) · · · fr(nr))t
.

By our assumptions on the functions fi, 1 ≤ i ≤ r, the tail in the second sum satisfies∑
p1···pkf1(n1)···fr(nr)>x

∑
t≥2

1

t(p1 · · · pkf1(n1) · · · fr(nr))t

≪
∑

p1···pkf1(n1)···fr(nr)>x

1

(p1 · · · pkf1(n1) · · · fr(nr))2

16



≪
∑

p1≥x
1
2

1

p21
+

∑
p2···pkf1(n1)···fr(nr)2≥x

1
2

1

(p1 · · · pkf1(n) · · · fr(nr))2

≪ · · · · · ·

≪
k∑

i=1

∑
pi≥x

1
2i

1

p2i
+

r∑
j=1

∑
fj(nj)≥x

1
2k+j

1

(fj(nj))2

≪ x−ε

for some constant ε > 0. Therefore, by (9) we obtain

− log Vk,r(x) =

(
r∏

i=1

∞∑
n=1

1

fi(n)

)
Pk(log log x)− c(k, f1, · · · , fr) +O

(
(log log x)k

log x

)
for some constant c(k, f1, · · · , fr) that depends on k and the functions fi, 1 ≤ i ≤ r.

Therefore, we know

Vk,r(x) = e
−
(∏r

i=1

∑∞
n=1

1
fi(n)

)
Pk(log log x)+c(k,f1,··· ,fr)

(
1 +O

(
(log log x)k

log x

))
.

We have finished the proof of Theorem 1.2.111

4.2. Proof of Equation (14)112

The proof of Equation (14) is similar to that of (8). We write∑
pns≤x

log(pns)

pns
=
∑
pns≤x

log p

pns
+
∑
pns≤x

log(ns)

pns
:= S5 + S6.

For S5, we take A = p, B = ns, g(A) = (logA)/A, and h(B) = 1/B in Lemma 2.2.

Combining with Mertens’ first theorem, we obtain

S5 = ζ(s) log x+O(1). (26)

For S6, we take A = p, B = ns, g(A) = 1/A, and h(B) = (logB)/B. Notice that
∞∑
n=1

log(ns)

ns
= −sζ ′(s).

From Mertens’ second theorem, similar to the argument of Lemma 2.2, we obtain

S6 = −sζ ′(s) log log x+O(1). (27)
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Combining (26) and (27), we obtain∑
pns≤x

log (pns)

pns
= ζ(s) log x− sζ ′(s) log log x+O(1),

which completes the proof of Equation (14).113

5. Proof of Theorem 1.3114

In this section we prove Theorem 1.3 by applying (12) in Corollary 3.115

5.1. Proof of Equation (15)116

By definition, we have ωk(n) =
∑

pmk|n 1. Then∑
n≤x

ωk(n) =
∑
n≤x

∑
pmk|n

1

=
∑

pmk≤x

∑
n≤x/pmk

1

=
∑

pmk≤x

⌊
x

pmk

⌋

= x
∑

pmk≤x

1

pmk
+O

 ∑
pmk≤x

1

 (28)

On the one hand, from (12) we know∑
pmk≤x

1

pmk
= ζ(k) (log log x+M) +O

(
log log x

log x

)
. (29)

On the other hand, by Theorem 1.1 we have∑
pmk≤x

1 ∼ ζ(k)
x

log x
. (30)

Combining (28), (29), and (30), we get∑
n≤x

ωk(n) = ζ(k) log log x+ ζ(k)Mx+O

(
x log log x

log x

)
,

which completes the proof of Equation (15).117
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5.2. Proof of Equation (16)118

We first compute the second moment of ωk(n). It is easy to see∑
n≤x

ω2
k(n) =

∑
n≤x

∑
pak|n

∑
qbk|n

1

=
∑
pak≤x

∑
qbk≤x

∑
n≤x

pak|n,qbk|n

1

=
∑
pak≤x

∑
qbk≤x

⌊
x

[pak, qbk]

⌋

= x
∑

[pak,qbk]≤x

1

[pak, qbk]
+O

 ∑
[pak,qbk]≤x

1


:= x · S7 + S8.

For the sum S7, we will prove

S7 =
ζ3(k)

ζ(2k)
(log log x)2 +O (log log x) . (31)

Lemma 2.5 and Mertens’ second theorem imply∑
p=q,[pak,qbk]≤x

1

[pak, qbk]
=

∑
p[ak,bk]≤x

1

p[ak, bk]

≤
∑

[ak,bk]≤x

1

[ak, bk]

∑
p≤x

1

p

≪
∑
p≤x

1

p

≪ log log x.

So we only need to consider the terms with p ̸= q. In the sum

S ′
7 =

∑
p ̸=q,[pak,qbk]≤x

1

[pak, qbk]
,

we let a = pe1qe2a1 and b = pf1qf2b1, where (a1, pq) = (b1, pq) = 1. Then [pak, qbk] =

pgqh[ak1, b
k
1], where g = max {ke1 + 1, kf1} ≥ 1 and h = max {ke2, kf2 + 1} ≥ 1. Next we
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discuss the contributions of the terms according to their e1, e2, f1, and f2 values. If e1 ≥ 1,

then [pak, qbk] ≥ p3q[ak1, b
k
1], and thus

∑
p ̸=q,[pak,qbk]≤x,e1≥1

1

[pak, qbk]
≪
∑
q≤x

1

q

∞∑
p=1

1

p3

∞∑
a1=1

∞∑
b1=1

1

[ak1, b
k
1]

≪ log log x. (32)

If f1 ≥ 1, then [pak, qbk] ≥ p2q[ak1, b
k
1], which implies

∑
p ̸=q,[pak,qbk]≤x,f1≥1

1

[pak, qbk]
≪
∑
q≤x

1

q

∞∑
p=1

1

p2

∞∑
a1=1

∞∑
b1=1

1

[ak1, b
k
1]

≪ log log x. (33)

Similarly, for the terms with e2 ≥ 1 or f2 ≥ 1, we also have∑
[pak,qbk]≤x

p ̸=q,e2≥1 or f2≥1

1

[pak, qbk]
= O (log log x) (34)

Noting that e1 = e2 = f1 = f2 = 0 implies [pak, qbk] = pq[ak1, b
k
1], we can combine the

estimates (32), (33), and (34) to obtain

S ′
7 =

∑
pq[ak,bk]≤x

p ̸=q,(a,pq)=(b,pq)=1

1

pq[ak, bk]
+O (log log x) .

In fact, we can remove the constrains p ̸= q and (a, pq) = (b, pq) = 1 in S ′
7 since∑

pq[ak,bk]≤x,p=q

1

pq[ak, bk]
=

∑
p2[ak,bk]≤x

1

p2[ak, bk]

≤
∑
p≤x

1

p2

∑
[ak,bk]≤x

1

[ak, bk]

< +∞,

∑
pq[ak,bk]≤x,p ̸=q

p|a,p|b

1

pq[ak, bk]
=

∑
pk+1q[ak/pk,bk/pk]≤x

1

pk+1q[ak/pk, bk/pk]

≤
∑
p≤x

1

pk+1

∑
[ak,bk]≤x

1

[ak, bk]

∑
q≤x

1

q

≪ log log x,
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and ∑
pq[ak,bk]≤x,p ̸=q

p|a,p∤b

1

pq[ak, bk]
=

∑
pk+1q[ak/pk,bk]≤x,p ̸=q

p|a,p∤b

1

pk+1q[ak/pk, bk]
≪ log log x.

Therefore, we have proved

S7 =
∑

pq[ak,bk]≤x

1

pq[ak, bk]
+O (log log x) .

Now Equation (31) holds when we apply Lemma 2.2 with A = pq, B = [ak, bk], g(A) = 1/A,119

and h(B) = 1/B, Lemma 2.5, and Lemma 2.6.120

By similar arguments we can prove

S8 = O (x log log x) . (35)

From (31) and (35) we know∑
n≤x

ω2
k(n) =

ζ3(k)

ζ(2k)
x (log log x)2 +O (x log log x) . (36)

Combining (36) and (15), we obtain∑
n≤x

(ωk(n)− ζ(k) log log x)2

=
∑
n≤x

ω2
k(n)− 2ζ(k) log log x ·

∑
n≤x

ωk(n) + ζ2(k)x (log log x)2

=
ζ3(k)

ζ(2k)
x (log log x)2 − 2ζ2(k)x (log log x)2 + ζ2(k)x (log log x)2 +O (x log log x)

=
ζ3(k)− ζ2(k)ζ(2k)

ζ(2k)
x (log log x)2 +O (x log log x) ,

which completes the proof of Equation (16).121
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