INEQUALITIES RELATED TO THE S-DIVERGENCE
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ABSTRACT. The S-Divergence is a distance like function on the
convex cone of positive definite matrices, which is motivated from
convex optimization. In this paper, we will prove some inequalities
for Kubo-Ando means with respect to the square root of the S-
Divergence.

1. INTRODUCTION

Let H,, denote the set of all n x n Hermitian matrices. The set of all
positive definite (henceforth positive) matrices in H, is denoted by P,.
The Frobenius norm of a matrix A is ||A||p = /tr(A*A), while ||A]|
denoted the operator norm.

The set P, is a well-studied differentiable Riemannian manifold, with
the Riemannian metric given by the differential form ds = || A='/2dAA™?|| .
The metric induces the Riemannian distance (for more information,
one can see, e.g., [2, Chapter 6]):

(1.1)  0g(A,B) :==||log(B~?AB~Y?)||p, VA,B>0.
Motivated from convex optimization, one can define the S-Divergence:

A+ B

(1.2)62(A, B) = log det( 5

) — %logdet(AB), VA, B>0.

Sra exhibited several properties akin to the Riemannian distance dg
(see [15]). Note that the S-divergence §% is non-negative definite and
symmetric, but not a metric. Indeed, Sra prove that dg is a metric on
P,, (see [15, Theorem 3.1]).
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Note that the equality logdet A = Trlog A holds for all A € P,,, by
the argument of [11, p.28], we have that

A71/2BA71/2 + I
2
ATPBAT2 4]

2

It follows that for any A > 0, we have that dg(AA, AB) = ds(A, B).

In this paper, we study the isometries with respect to dg in Section 2,
which improves Molnar’s result [11, Theorem 4]. In section 3, we prove
some inequalities related to the geometric mean, spectral geometric
mean and Wasserstein mean under the S-divergence.

62(A,B) = logdet( ) — %logdet(A_lﬂBA_lﬂ)

(1.3) = Tr[log( ) —log(A~Y2BAY/2)1/2),

2. ISOMETRIES WITH RESPECT TO dg

Molnér gave the structures of isometries on the metric space (P, dg)
as follows:

Theorem 2.1. (see [11, Theorem 4]) Assume n > 2. Suppose that
¢ : P, — P, is a bijective map such that

(2.1) ds(p(A),p(B)) =ds(A,B), VYA BeP,.

Then there is an invertible matriz T € M, «, such that ¢ is of one of
the following forms:
(s1) ¢(A) = TAT™,
(s2) ¢(A) = TA™'T™,
(s3) ¢(A) = TA™T",
(s4) ¢(A) = T(A")~'T"
forall A€ P,.

Actually, we can improve the above result. Let S, be the set of all
n X n positive matrices with unit trace.

Theorem 2.2. Suppose that ¢ : S, — S,, be a bijective isometry with
respect to dg, then there is an invertible matriz T € M, y,, such that ¢
s of one of the following forms:

(s1) ¢(4) = TAT",
(s2) $(A) = TA7T™,
(s3) ¢(A) = TATT*,
(s4) $(4) = T(A™)'T*

forall A €S,.
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Proof. By the assumption of ¢, one can define ¢ : P,, — P,, by
A
= P,.
v(A) = (o). VAER,

Then it is easy to see that ¢ is a bijective and

05(¢(A),¥(B)) = ds(A, B)

for any A, B € P, with tr(A) = tr(B). Moreover, conditions in [11,
Proposition 8] are filfilled and then, by the proof of [11, Lemma 9], we
have that

Y(AB™'A) = w(A)Y(B) '(A), VA BEcP,.

By the similar argument in [11, Theorem 4], one can find an invertible
matrix T' € M,,,, such that v is of one of the following forms:

(s1) ¥(A) = TAT™,
(s2) (A) = TA'T",
(s3) ¥(A) =TA"T",
(s4) (A) = T(A") 1T
for all A € P,. In particular, ¢ must be of the form required. 0

3. INEQUALITIES RELATED TO VARIOUS MEANS

In this section, we will prove some inequalities related to some Kubo-
Ando means. For positive matrices A and B, recall that the geometric
mean AfB is defined by

AﬂB _ A1/2(Afl/QBA71/2>1/2A1/2.

The geometric mean has a lot of attractive properties (see, e.g., [1, 9]).
Surprisingly, Sra proved the following result

Theorem 3.1. [15, Theorem 4.1] A4B is the equidistant from A and
B, that s,
55(A, ALB) = 65(B, A4 B).

Suppose that t € [0, 1], then one can define the Wasserstein mean of
A, B e P, by
Ao, B = (1 —t)?A+?B+1t(1 —t)[AY2(AYV2ZBAY?)/2 7712
+A™ 1/2(A1/QBA1/2)1/2A1/2]
= (1—t)2A+t*B+1(1 —t)[(AB)Y? + (BA)YY
_ Afl/Q[(l . Zf)A + t(Al/QBA1/2)1/2]2A71/2'

Bhatia, Jain and Lim [3, p.180] proved that A ¢, B is the natural
parametrisation of the geodesic joining A and B.
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Theorem 3.2. For any A, B € P,, and any t € (0,1), we have that
02(A, Aoy B) > 265(1,(1 —t)I +tA "B).

Proof. Let C = AY2BA'Y2. By [15, Theorem 4.5 and Corollary 4.10],

we can derive that

62(A, Ao, B)

SU(A (1 — ) A+ H(AV2BAV)2])

26%(A, (1 — t)A + t(AV2BAY?)Y/?)

20%(1, (1 —t)I + tA '4B).

v

O

Remark 3.3. For A and B, when put C' = AY2BAY? we just can prove
that

62(B, Ao, B)
= 83(C, (1 —t)A+tCV?)?)
202(CY2, (1 —t) A+ tCV?).

Moreover, one can define the spectral geometric mean between posi-
tive matrices A and B:

ARB = (A7'4B) PA(ATtB)'?

(we refer [9] for more details). It is easy to see that 6%2(A~'¢B, AjB) =
6%(I1, A).

Proposition 3.4. For any positive matrices A and B, we have that
1 _
S, ALB) < So4(B, A7),
Proof. By the definition, one can derive that
05(1, A1B) = 5((A7'8B)™" A) = 65(A7'4B, A7)
_ 5%((141/23141/2)1/27 I)
< %5§(A1/QBA1/2, I)

%6§(B,A1).

0

More generally, one can define weighted spectral geometric mean
(see, e.g., [10]). For 0 < ¢t < 1. Let A, B be positive matrices, the
weighted spectral geometric mean is defined by

AnB = (A" B) A(A '4B)".
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By the definition, it is easy to prove the following properties:

Lemma 3.5. For any s,t € [0,1] and any positive matrices A, B, we

have that

(i) if t > s, then 6%(A8B, Aty B) = 6%(A, Ay, _B);
(ii) of t < s, then 6%(AnB, Ay B) = 0%(At, B, A);

When 1/2 <t < 1, we have

6§(A_1ﬁB’ Ast)

(LA A B
= 03(1, Ay_1)2B).

On the other hand, to give a universal esitimate, we can prove the
following inequality.

Theorem 3.6. Ift # 1/2, for any positive matrices A, B, we have

05(A™'¢B, A B) <

5%(3, A(372t)/(172t))'

11— 2t]
2

Proof. When 0 < t < 1/2, it follows from the properties of S-divergence

55 that

55(A B, A B)

05((A™1B)1 7, A)

(1 —2t)6%(A~ 1B, AY(720)

(1 N 2t)5§((A1/ZBA1/2)1/2, A1+1/(1—2t))

1 _22155%(141/23141/2’ Al-40/(-20))
1 _2%5@(3, Al—at/(1-20)-1)
1—2t

5%(3, A(372t)/(172t)>'

2
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When 1/2 <t < 1, by a similar argument,

62(AMB, Ay B)
= (( 1ﬁB)1 2t A)
= 63((AB)* 1 AT
< (2t = 1)og(AT'EB, AVI)
= (2t — 1)(52((141/23141/2)1/27A1+1/(1—2t))
< 2t 52(A1/2BA1/2 Al- 4t)/(1—2t))
2t —
= S(B,A(4_4t)/(1_2t)_l)
_ 2t2— 155(37 A(372t)/(172t)>.

Remark 3.7. We also can derive that
05(A7'EB, A B) = 65((A™'4B) ™™, A).
Remark 3.8. Note that Af; B is the solution of the equation (A™'fB)! =
A7HX, then we have that
5?9(147 AhtB)
GL(AVZAAV? AV2( Ay, B) AY2)
205 (A, (A2 (A5, B)A?)'/?)
203(1, A4( A1, B))
— 203(1,(AB)).

v
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