INEQUALITIES RELATED TO THE S-DIVERGENCE

LIN FENG, LEI LI, JUNMING ZHANG, AND YUANMING ZHANG

ABSTRACT. The S-Divergence is a distance like function on the convex cone of positive definite matrices, which is motivated from convex optimization. In this paper, we will prove some inequalities for Kubo-Ando means with respect to the square root of the S-Divergence.

1. INTRODUCTION

Let \mathbb{H}_n denote the set of all $n \times n$ Hermitian matrices. The set of all positive definite (henceforth *positive*) matrices in \mathbb{H}_n is denoted by \mathbb{P}_n . The Frobenius norm of a matrix A is $||A||_F = \sqrt{\text{tr}(A^*A)}$, while $||A||$ denoted the operator norm.

The set \mathbb{P}_n is a well-studied differentiable Riemannian manifold, with the Riemannian metric given by the differential form $ds = ||A^{-1/2}dA^{-1/2}||_F$. The metric induces the Riemannian distance (for more information, one can see, e.g., [2, Chapter 6]):

$$
(1.1) \qquad \delta_R(A, B) := ||\log(B^{-1/2}AB^{-1/2})||_F, \quad \forall A, B > 0.
$$

Motivated from convex optimization, one can define the S-Divergence:

$$
(1.2)\delta_S^2(A, B) = \log \det(\frac{A+B}{2}) - \frac{1}{2}\log \det(AB), \ \forall A, B > 0.
$$

Sra exhibited several properties akin to the Riemannian distance δ_R (see [15]). Note that the S-divergence δ_S^2 is non-negative definite and symmetric, but not a *metric*. Indeed, Sra prove that δ_S is a metric on \mathbb{P}_n (see [15, Theorem 3.1]).

Date: August 23, 2021.

²⁰⁰⁰ Mathematics Subject Classification. 46.

Key words and phrases. S-Divergence; Kubo-Ando means; positive definite matrices.

This work is partly supported by NSF of China (12171251).

Note that the equality log det $A = \text{Tr} \log A$ holds for all $A \in \mathbb{P}_n$, by the argument of [11, p.28], we have that

$$
\delta_S^2(A, B) = \log \det(\frac{A^{-1/2}BA^{-1/2} + I}{2}) - \frac{1}{2} \log \det(A^{-1/2}BA^{-1/2})
$$

(1.3) = Tr[log(\frac{A^{-1/2}BA^{-1/2} + I}{2}) - log(A^{-1/2}BA^{-1/2})^{1/2}].

It follows that for any $\lambda > 0$, we have that $\delta_S(\lambda A, \lambda B) = \delta_S(A, B)$.

In this paper, we study the isometries with respect to δ_S in Section 2, which improves Molnár's result $[11,$ Theorem 4. In section 3, we prove some inequalities related to the geometric mean, spectral geometric mean and Wasserstein mean under the S-divergence.

2. ISOMETRIES WITH RESPECT TO δ_S

Molnár gave the structures of isometries on the metric space (\mathbb{P}_n, δ_S) as follows:

Theorem 2.1. (see [11, Theorem 4]) Assume $n \geq 2$. Suppose that $\phi : \mathbb{P}_n \to \mathbb{P}_n$ is a bijective map such that

(2.1)
$$
\delta_S(\phi(A), \phi(B)) = \delta_S(A, B), \quad \forall A, B \in \mathbb{P}_n.
$$

∗

Then there is an invertible matrix $T \in M_{n \times n}$ such that ϕ is of one of the following forms:

(s1)
$$
\phi(A) = TAT^*
$$
,
\n(s2) $\phi(A) = TA^{-1}T^*$,
\n(s3) $\phi(A) = T A^{tr}T^*$,
\n(s4) $\phi(A) = T(A^{tr})^{-1}T^*$

for all $A \in \mathbb{P}_n$.

Actually, we can improve the above result. Let \mathcal{S}_n be the set of all $n \times n$ positive matrices with unit trace.

Theorem 2.2. Suppose that $\phi : \mathbb{S}_n \to \mathbb{S}_n$ be a bijective isometry with respect to δ_S , then there is an invertible matrix $T \in M_{n \times n}$ such that ϕ is of one of the following forms:

(s1)
$$
\phi(A) = TAT^*
$$
,
\n(s2) $\phi(A) = TA^{-1}T^*$,
\n(s3) $\phi(A) = T A^{tr}T^*$,
\n(s4) $\phi(A) = T(A^{tr})^{-1}T$

for all $A \in \mathbb{S}_n$.

Proof. By the assumption of ϕ , one can define $\psi : \mathbb{P}_n \to \mathbb{P}_n$ by

$$
\psi(A) = \text{tr}(A)\phi(\frac{A}{\text{tr}(A)}), \quad \forall A \in \mathbb{P}_n.
$$

Then it is easy to see that ψ is a bijective and

$$
\delta_S(\psi(A), \psi(B)) = \delta_S(A, B)
$$

for any $A, B \in \mathbb{P}_n$ with $tr(A) = tr(B)$. Moreover, conditions in [11, Proposition 8] are filfilled and then, by the proof of [11, Lemma 9], we have that

$$
\psi(AB^{-1}A) = \psi(A)\psi(B)^{-1}\psi(A), \quad \forall A, B \in \mathbb{P}_n.
$$

By the similar argument in [11, Theorem 4], one can find an invertible matrix $T \in M_{n \times n}$ such that ψ is of one of the following forms:

(s1) $\psi(A) = TAT^*$, (s2) $\psi(A) = TA^{-1}T^*$, (s3) $\psi(A) = T A^{tr} T^*$, (s4) $\psi(A) = T(A^{tr})^{-1}T^*$

for all $A \in \mathbb{P}_n$. In particular, ϕ must be of the form required. \Box

3. Inequalities related to various means

In this section, we will prove some inequalities related to some Kubo-Ando means. For positive matrices A and B , recall that the *geometric mean* $A \sharp B$ is defined by

$$
A \sharp B = A^{1/2} (A^{-1/2} B A^{-1/2})^{1/2} A^{1/2}.
$$

The geometric mean has a lot of attractive properties (see, e.g., [1, 9]). Surprisingly, Sra proved the following result

Theorem 3.1. [15, Theorem 4.1] $A \sharp B$ is the equidistant from A and B, that is,

$$
\delta_S(A, A \sharp B) = \delta_S(B, A \sharp B).
$$

Suppose that $t \in [0, 1]$, then one can define the *Wasserstein mean* of $A, B \in \mathbb{P}_n$ by

$$
A \diamond_t B = (1-t)^2 A + t^2 B + t(1-t)[A^{1/2}(A^{1/2}BA^{1/2})^{1/2}A^{-1/2} + A^{-1/2}(A^{1/2}BA^{1/2})^{1/2}A^{1/2}] = (1-t)^2 A + t^2 B + t(1-t)[(AB)^{1/2} + (BA)^{1/2}] = A^{-1/2}[(1-t)A + t(A^{1/2}BA^{1/2})^{1/2}]^2A^{-1/2}.
$$

Bhatia, Jain and Lim [3, p.180] proved that $A \otimes_t B$ is the natural parametrisation of the geodesic joining A and B.

Theorem 3.2. For any $A, B \in \mathbb{P}_n$ and any $t \in (0, 1)$, we have that $\delta_S^2(A, A \diamond_t B) \geq 2\delta_S^2(I, (1-t)I + tA^{-1} \sharp B).$

Proof. Let $C = A^{1/2}BA^{1/2}$. By [15, Theorem 4.5 and Corollary 4.10], we can derive that

$$
\delta_S^2(A, A \diamond_t B)
$$
\n
$$
= \delta_S^2(A^2, [(1-t)A + t(A^{1/2}BA^{1/2})^{1/2}]^2)
$$
\n
$$
\geq 2\delta_S^2(A, (1-t)A + t(A^{1/2}BA^{1/2})^{1/2})
$$
\n
$$
= 2\delta_S^2(I, (1-t)I + tA^{-1} \sharp B).
$$

Remark 3.3. For A and B, when put $C = A^{1/2}BA^{1/2}$, we just can prove that

$$
\delta_S^2(B, A \diamond_t B) \n= \delta_S^2(C, ((1-t)A + tC^{1/2})^2) \n= 2\delta_S^2(C^{1/2}, (1-t)A + tC^{1/2}).
$$

Moreover, one can define the spectral geometric mean between positive matrices A and B :

$$
A \natural B = (A^{-1} \sharp B)^{1/2} A (A^{-1} \sharp B)^{1/2}
$$

(we refer [9] for more details). It is easy to see that $\delta_S^2(A^{-1} \sharp B, A \sharp B) =$ $\delta_S^2(I, A)$.

Proposition 3.4. For any positive matrices A and B, we have that

$$
\delta_S^2(I, A \natural B) \leq \frac{1}{2} \delta_S^2(B, A^{-1}).
$$

Proof. By the definition, one can derive that

$$
\delta_S^2(I, A \natural B) = \delta_S^2((A^{-1} \sharp B)^{-1}, A) = \delta_S^2(A^{-1} \sharp B, A^{-1})
$$

\n
$$
= \delta_S^2((A^{1/2} B A^{1/2})^{1/2}, I)
$$

\n
$$
\leq \frac{1}{2} \delta_S^2(A^{1/2} B A^{1/2}, I)
$$

\n
$$
= \frac{1}{2} \delta_S^2(B, A^{-1}).
$$

 \Box

More generally, one can define weighted spectral geometric mean (see, e.g., [10]). For $0 \le t \le 1$. Let A, B be positive matrices, the weighted spectral geometric mean is defined by

$$
A \natural_t B = (A^{-1} \sharp B)^t A (A^{-1} \sharp B)^t.
$$

By the definition, it is easy to prove the following properties:

Lemma 3.5. For any $s, t \in [0, 1]$ and any positive matrices A, B, we have that

- (i) if $t > s$, then $\delta_S^2(A\xi_s B, A\xi_t B) = \delta_S^2(A, A\xi_{t-s} B)$;
- (ii) if $t < s$, then $\delta_S^2(A\natural_s B, A\natural_t B) = \delta_S^2(A\natural_{s-t} B, A);$

When $1/2 < t < 1$, we have

$$
\delta_S^2(A^{-1} \sharp B, A \natural_t B) \n= \delta_S^2(I, (A^{-1} \sharp B)^{t-1/2} A (A^{-1} \sharp B)^{t-1/2}) \n= \delta_S^2(I, A \natural_{t-1/2} B).
$$

On the other hand, to give a universal esitimate, we can prove the following inequality.

Theorem 3.6. If $t \neq 1/2$, for any positive matrices A, B, we have

$$
\delta_S^2(A^{-1} \sharp B, A \natural_t B) \le \frac{|1 - 2t|}{2} \delta_S^2(B, A^{(3 - 2t)/(1 - 2t)}).
$$

Proof. When $0 < t < 1/2$, it follows from the properties of S-divergence δ_S that

$$
\delta_S^2(A^{-1} \sharp B, A \natural_t B)
$$
\n
$$
= \delta_S^2((A^{-1} \sharp B)^{1-2t}, A)
$$
\n
$$
\leq (1 - 2t)\delta_S^2(A^{-1} \sharp B, A^{1/(1-2t)})
$$
\n
$$
= (1 - 2t)\delta_S^2((A^{1/2}BA^{1/2})^{1/2}, A^{1+1/(1-2t)})
$$
\n
$$
\leq \frac{1 - 2t}{2} \delta_S^2(A^{1/2}BA^{1/2}, A^{(4-4t)/(1-2t)})
$$
\n
$$
= \frac{1 - 2t}{2} \delta_S^2(B, A^{(4-4t)/(1-2t)-1})
$$
\n
$$
= \frac{1 - 2t}{2} \delta_S^2(B, A^{(3-2t)/(1-2t)}).
$$

When $1/2 < t < 1$, by a similar argument,

$$
\delta_S^2(A^{-1} \sharp B, A \natural_t B)
$$
\n
$$
= \delta_S^2((A^{-1} \sharp B)^{1-2t}, A)
$$
\n
$$
= \delta_S^2((A^{-1} \sharp B)^{2t-1}, A^{-1})
$$
\n
$$
\leq (2t-1)\delta_S^2(A^{-1} \sharp B, A^{1/(1-2t)})
$$
\n
$$
= (2t-1)\delta_S^2((A^{1/2}BA^{1/2})^{1/2}, A^{1+1/(1-2t)})
$$
\n
$$
\leq \frac{2t-1}{2} \delta_S^2(A^{1/2}BA^{1/2}, A^{(4-4t)/(1-2t)})
$$
\n
$$
= \frac{2t-1}{2} \delta_S^2(B, A^{(4-4t)/(1-2t)-1})
$$
\n
$$
= \frac{2t-1}{2} \delta_S^2(B, A^{(3-2t)/(1-2t)}).
$$

 \Box

Remark 3.7. We also can derive that

$$
\delta_S^2(A^{-1} \sharp B, A \natural_t B) = \delta_S^2((A^{-1} \sharp B)^{1-2t}, A).
$$

Remark 3.8. Note that $A\natural_t B$ is the solution of the equation $(A^{-1}\sharp B)^t =$ A^{-1} $\sharp X$, then we have that

$$
\delta_S^2(A, A \natural_t B) \n= \delta_S^2(A^{1/2} A A^{1/2}, A^{1/2} (A \natural_t B) A^{1/2}) \n\geq 2 \delta_S^2(A, (A^{1/2} (A \natural_t B) A^{1/2})^{1/2}) \n= 2 \delta_S^2(I, A^{-1} \sharp (A \natural_t B)) \n= 2 \delta_S^2(I, (A^{-1} \sharp B)^t).
$$

REFERENCES

- [1] T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, Linear Algebra Appl., 26(1979), 203-241.
- [2] R. Bhatia, Positive Definite Matrices, Princeton University Press, 2007.
- [3] R. Bhatia, T. Jain and Y. Lim, On the Bures-Wasserstein distance between positive definite matrices, Expo. Math., 37(2019), 165-191.
- [4] H.-Y. Chen, G. P. Gehér, C.-N. Liu, L. Molnár, D. Virosztek and N.-C. Wong, Maps on positive definie operators preserving the quantum χ^2_{α} -divergence, Lett. Math. Phys., 107(2017), 2267-2290.
- [5] T. H. Dinh, R. Dumitru and J. A. Franco, Some geometric properties of matrix means with respect to different metrics, *Positivity*, **24**(2020), 1419-1434.
- [6] M. Gaál and L. Molnár, Transformations on density operators and on positive definite operators preserving the quantum Rényi divergence, Period Math. Hung., $74(2017)$, 88-107.
- [7] M. Gaál and G. Nagy, Maps on Hilbert space effect algebras preserving norms of operator means, Acta Sci. Math. (Szeged), 84(2018), no.1-2, 201-208.
- [8] S. Kim and H. Lee, Relatvie operator entropy related with the spectral geometric mean, Anal. Math. Phys., 5(2015), 233-240.
- [9] L. Li, L. Molnár and L. Wang, On preservers related to the spectral geometric mean, Linear Algebra Appl., 610(2021), 647-672.
- [10] Y. Lim and M. Pálfia, Weighted inductive means, *Linear Algebra Appl.*, $453(2014)$, 59-83.
- [11] L. Moln´ar, Jordan triple endomorphisms and isometries of spaces if positive definite matrices, Linear Multilinear Alg., 63(2015), 12-33.
- [12] L. Moln´ar and G. Nagy, Isometries and relative entropy preserving maps on density operators, *Linear Multilinear Alg.*, $60(2012)$, 93-108.
- [13] L. Moln´ar, J. Pitrik and D. Virosztek, Maps on positive definite matrices preserving Bregman and Jensen divergences, Linear Algebra Appl., 495(2016), 174-189.
- [14] L. Molnár and W. Timmermann, Maps on quantum states preserving the Jensen-Shannon divergence, J. Phys. A: Math. Theor., 42(2009), 015301(9pp).
- [15] S. Sra, Positive definite matrices and the S-divergence, Proc. Amer. Math. Soc., **144**(7)(2016), 2787-2797.

(Feng) School of Mathematical Sciences, Nankai University, Tianjin 300071, China

Email address: 2388925151@qq.com

(Li) School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China

Email address: leilee@nankai.edu.cn

(J. Zhang) School of Mathematical Sciences, Nankai University, Tianjin 300071, China

Email address: llddeddym@outlook.com

(Y. Zhang) School of Mathematical Sciences, Nankai University, Tianjin 300071, China

Email address: 909173577@qq.com