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Abstract. The S-Divergence is a distance like function on the
convex cone of positive definite matrices, which is motivated from
convex optimization. In this paper, we will prove some inequalities
for Kubo-Ando means with respect to the square root of the S-
Divergence.

1. Introduction

Let Hn denote the set of all n×n Hermitian matrices. The set of all
positive definite (henceforth positive) matrices in Hn is denoted by Pn.

The Frobenius norm of a matrix A is ‖A‖F =
√

tr(A∗A), while ‖A‖
denoted the operator norm.

The set Pn is a well-studied differentiable Riemannian manifold, with
the Riemannian metric given by the differential form ds = ‖A−1/2dAA−1/2‖F .
The metric induces the Riemannian distance (for more information,
one can see, e.g., [2, Chapter 6]):

δR(A,B) := ‖ log(B−1/2AB−1/2)‖F , ∀A,B > 0.(1.1)

Motivated from convex optimization, one can define the S-Divergence:

δ2S(A,B) = log det(
A+B

2
)− 1

2
log det(AB), ∀A,B > 0.(1.2)

Sra exhibited several properties akin to the Riemannian distance δR
(see [15]). Note that the S-divergence δ2S is non-negative definite and
symmetric, but not a metric. Indeed, Sra prove that δS is a metric on
Pn (see [15, Theorem 3.1]).
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Note that the equality log detA = Tr logA holds for all A ∈ Pn, by
the argument of [11, p.28], we have that

δ2S(A,B) = log det(
A−1/2BA−1/2 + I

2
)− 1

2
log det(A−1/2BA−1/2)

= Tr[log(
A−1/2BA−1/2 + I

2
)− log(A−1/2BA−1/2)1/2].(1.3)

It follows that for any λ > 0, we have that δS(λA, λB) = δS(A,B).
In this paper, we study the isometries with respect to δS in Section 2,

which improves Molnár’s result [11, Theorem 4]. In section 3, we prove
some inequalities related to the geometric mean, spectral geometric
mean and Wasserstein mean under the S-divergence.

2. Isometries with respect to δS

Molnár gave the structures of isometries on the metric space (Pn, δS)
as follows:

Theorem 2.1. (see [11, Theorem 4]) Assume n ≥ 2. Suppose that
φ : Pn → Pn is a bijective map such that

δS(φ(A), φ(B)) = δS(A,B), ∀A,B ∈ Pn.(2.1)

Then there is an invertible matrix T ∈ Mn×n such that φ is of one of
the following forms:

(s1) φ(A) = TAT ∗,
(s2) φ(A) = TA−1T ∗,
(s3) φ(A) = TAtrT ∗,
(s4) φ(A) = T (Atr)−1T ∗

for all A ∈ Pn.

Actually, we can improve the above result. Let Sn be the set of all
n× n positive matrices with unit trace.

Theorem 2.2. Suppose that φ : Sn → Sn be a bijective isometry with
respect to δS, then there is an invertible matrix T ∈ Mn×n such that φ
is of one of the following forms:

(s1) φ(A) = TAT ∗,
(s2) φ(A) = TA−1T ∗,
(s3) φ(A) = TAtrT ∗,
(s4) φ(A) = T (Atr)−1T ∗

for all A ∈ Sn.
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Proof. By the assumption of φ, one can define ψ : Pn → Pn by

ψ(A) = tr(A)φ(
A

tr(A)
), ∀A ∈ Pn.

Then it is easy to see that ψ is a bijective and

δS(ψ(A), ψ(B)) = δS(A,B)

for any A,B ∈ Pn with tr(A) = tr(B). Moreover, conditions in [11,
Proposition 8] are filfilled and then, by the proof of [11, Lemma 9], we
have that

ψ(AB−1A) = ψ(A)ψ(B)−1ψ(A), ∀A,B ∈ Pn.

By the similar argument in [11, Theorem 4], one can find an invertible
matrix T ∈Mn×n such that ψ is of one of the following forms:

(s1) ψ(A) = TAT ∗,
(s2) ψ(A) = TA−1T ∗,
(s3) ψ(A) = TAtrT ∗,
(s4) ψ(A) = T (Atr)−1T ∗

for all A ∈ Pn. In particular, φ must be of the form required. �

3. Inequalities related to various means

In this section, we will prove some inequalities related to some Kubo-
Ando means. For positive matrices A and B, recall that the geometric
mean A]B is defined by

A]B = A1/2(A−1/2BA−1/2)1/2A1/2.

The geometric mean has a lot of attractive properties (see, e.g., [1, 9]).
Surprisingly, Sra proved the following result

Theorem 3.1. [15, Theorem 4.1] A]B is the equidistant from A and
B, that is,

δS(A,A]B) = δS(B,A]B).

Suppose that t ∈ [0, 1], then one can define the Wasserstein mean of
A,B ∈ Pn by

A �t B = (1− t)2A+ t2B + t(1− t)[A1/2(A1/2BA1/2)1/2A−1/2

+A−1/2(A1/2BA1/2)1/2A1/2]

= (1− t)2A+ t2B + t(1− t)[(AB)1/2 + (BA)1/2]

= A−1/2[(1− t)A+ t(A1/2BA1/2)1/2]2A−1/2.

Bhatia, Jain and Lim [3, p.180] proved that A �t B is the natural
parametrisation of the geodesic joining A and B.
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Theorem 3.2. For any A,B ∈ Pn and any t ∈ (0, 1), we have that

δ2S(A,A �t B) ≥ 2δ2S(I, (1− t)I + tA−1]B).

Proof. Let C = A1/2BA1/2. By [15, Theorem 4.5 and Corollary 4.10],
we can derive that

δ2S(A,A �t B)

= δ2S(A2, [(1− t)A+ t(A1/2BA1/2)1/2]2)

≥ 2δ2S(A, (1− t)A+ t(A1/2BA1/2)1/2)

= 2δ2S(I, (1− t)I + tA−1]B).

�

Remark 3.3. For A and B, when put C = A1/2BA1/2, we just can prove
that

δ2S(B,A �t B)

= δ2S(C, ((1− t)A+ tC1/2)2)

= 2δ2S(C1/2, (1− t)A+ tC1/2).

Moreover, one can define the spectral geometric mean between posi-
tive matrices A and B:

A\B = (A−1]B)1/2A(A−1]B)1/2

(we refer [9] for more details). It is easy to see that δ2S(A−1]B,A\B) =
δ2S(I, A).

Proposition 3.4. For any positive matrices A and B, we have that

δ2S(I, A\B) ≤ 1

2
δ2S(B,A−1).

Proof. By the definition, one can derive that

δ2S(I, A\B) = δ2S((A−1]B)−1, A) = δ2S(A−1]B,A−1)

= δ2S((A1/2BA1/2)1/2, I)

≤ 1

2
δ2S(A1/2BA1/2, I)

=
1

2
δ2S(B,A−1).

�

More generally, one can define weighted spectral geometric mean
(see, e.g., [10]). For 0 ≤ t ≤ 1. Let A,B be positive matrices, the
weighted spectral geometric mean is defined by

A\tB = (A−1]B)tA(A−1]B)t.
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By the definition, it is easy to prove the following properties:

Lemma 3.5. For any s, t ∈ [0, 1] and any positive matrices A,B, we
have that

(i) if t > s, then δ2S(A\sB,A\tB) = δ2S(A,A\t−sB);
(ii) if t < s, then δ2S(A\sB,A\tB) = δ2S(A\s−tB,A);

When 1/2 < t < 1, we have

δ2S(A−1]B,A\tB)

= δ2S(I, (A−1]B)t−1/2A(A−1]B)t−1/2)

= δ2S(I, A\t−1/2B).

On the other hand, to give a universal esitimate, we can prove the
following inequality.

Theorem 3.6. If t 6= 1/2, for any positive matrices A,B, we have

δ2S(A−1]B,A\tB) ≤ |1− 2t|
2

δ2S(B,A(3−2t)/(1−2t)).

Proof. When 0 < t < 1/2, it follows from the properties of S-divergence
δS that

δ2S(A−1]B,A\tB)

= δ2S((A−1]B)1−2t, A)

≤ (1− 2t)δ2S(A−1]B,A1/(1−2t))

= (1− 2t)δ2S((A1/2BA1/2)1/2, A1+1/(1−2t))

≤ 1− 2t

2
δ2S(A1/2BA1/2, A(4−4t)/(1−2t))

=
1− 2t

2
δ2S(B,A(4−4t)/(1−2t)−1)

=
1− 2t

2
δ2S(B,A(3−2t)/(1−2t)).
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When 1/2 < t < 1, by a similar argument,

δ2S(A−1]B,A\tB)

= δ2S((A−1]B)1−2t, A)

= δ2S((A−1]B)2t−1, A−1)

≤ (2t− 1)δ2S(A−1]B,A1/(1−2t))

= (2t− 1)δ2S((A1/2BA1/2)1/2, A1+1/(1−2t))

≤ 2t− 1

2
δ2S(A1/2BA1/2, A(4−4t)/(1−2t))

=
2t− 1

2
δ2S(B,A(4−4t)/(1−2t)−1)

=
2t− 1

2
δ2S(B,A(3−2t)/(1−2t)).

�

Remark 3.7. We also can derive that

δ2S(A−1]B,A\tB) = δ2S((A−1]B)1−2t, A).

Remark 3.8. Note that A\tB is the solution of the equation (A−1]B)t =
A−1]X, then we have that

δ2S(A,A\tB)

= δ2S(A1/2AA1/2, A1/2(A\tB)A1/2)

≥ 2δ2S(A, (A1/2(A\tB)A1/2)1/2)

= 2δ2S(I, A−1](A\tB))

= 2δ2S(I, (A−1]B)t).
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